Numerical Solutions for Volterra Integro-differential Forms of Lane-emden Equations of First and Second Kind Using Legendre Multi-wavelets

نویسندگان

  • PRAKASH KUMAR SAHU
  • SANTANU SAHA RAY
چکیده

A numerical method based on Legendre multi-wavelets is applied for solving Lane-Emden equations which form Volterra integro-differential equations. The Lane-Emden equations are converted to Volterra integro-differential equations and then are solved by the Legendre multi-wavelet method. The properties of Legendre multi-wavelets are first presented. The properties of Legendre multi-wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved by any numerical method. Illustrative examples are discussed to show the validity and applicability of the present method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives

In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...

متن کامل

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

A Coupled Method of Laplace Transform and Legendre Wavelets for Lane-Emden-Type Differential Equations

A coupled method of Laplace transform and Legendre wavelets is presented to obtain exact solutions of Lane-Emden-type equations. By employing properties of Laplace transform, a new operator is first introduced and then its Legendre wavelets operational matrix is derived to convert the Lane-Emden equations into a system of algebraic equations. Block pulse functions are used to calculate the Lege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015